All functions

bind_boosted_rt()

Bind Boosting Results to Stable Rt Estimates

boost_rt()

Boost Rt Estimates Given Reference Data and Cross-Validation Errors

bsts_fit()

Bayesian Structural Time Series: Fit Model

bsts_season()

Bayesian Structural Time Series: Seasonal Components

bsts_trend()

Bayesian Structural Time Series: Trend Components

calc_active_cases()

Calculate Active Cases Based on 14 Day Heuristic

calibrate_rt()

Simple Bayesian Estimates of the Time-Varying Reproduction Number

clean_linelist()

Remove Incomplete, Illogical, and Missing Data from an Incidence Linelist

cv_decomposition()

Cross-Validate Predictions in an STL Decomposition Conditional on Future Data

cv_linelist_decomposition()

Cross-Validate the STL Decomposition Step of prep_linelist()

cv_rt()

Apply Rolling Cross-Validation to Rt Calculations Given Cross-Validated Decomposition Estimates

deanomalize()

Replace Anomalies with Expected Values Using the anomalize Package

estimate_activity()

Estimate Infectious Activity from Incidence and Serial Interval

estimate_boosted_rt()

Boosted Bayesian Estimates of the Effective Reproduction Number

estimate_delay()

Estimate Reporting Delay Using a Simple Moving Average

estimate_rt()

(Boosted) Bayesian Estimates of Effective Reproduction Number

estimate_unboosted_rt()

Run the Full Reproduction Number Modeling Pipeline

expm1_decomposed()

Convert Decompositions Performed Under a log1p() Transform to Linear Scale

functionalize()

Integrate a Vector w.r.t. Time

interpolate()

Interpolate a Continuous Function of Time interpolate() creates a function of time from a time-indexed input object. It powers functionalize(). This documentation is unfinished.

interpolate_vec()

Convert a Time-Indexed Vector to Function of Time (i.e. x = f(t))

nowcast_cases()

Nowcast Cases by Specimen Collection Date

nowcast_tests() nowcast_tests()

Nowcast

plot_rt()

Plot the Results of estimate_rt()

prep_linelist()

Prepare a Linelist for Rt Estimation

prep_linelist_decomposition()

Prepare Linelist for STL Decomposition of Incidence Curve

reduce_rt_error()

Combine a List of Rt Errors into a Tibble Grouped by Forecast Horizon

sample_rt_error()

Bootstrap Rt Estimates Using Past Errors

sirv()

Simulate a SIR Model with Vaccination and Variants

summarize_rt_error()

Compute Updated Summary of Rt Smooth

tidy_rt()

Tidy an estimate_R Object

validate_decomposition()

Map a Dataset to an STL Decomposition Using Data Up to a Specific Time Point

validate_rt()

Compute Errors for Rt Smoothing

weight_rt_error()

Calculate Geometrically Decaying Weights for Rt Sampling